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Lecture 3: September 4

Let us first finish up the discussion from last time. Recall that X was a compact
Kähler manifold of dimension n, with Kähler form ω. We defined an action of the
Lie algebra sl2(C) on the space of smooth forms on X (and hence on the cohomology
of X) by setting

X = 2πi ω : Ak(X,C)→ Ak+2(X,C)

Y = (2πi)−1Λ: Ak(X,C)→ Ak+2(X,C),

and by letting H act on Ak(X,C) as multiplication by k − n. The point was the
resulting action is independent of the choice of i =

√
−1. We then described the

induced action of the element

w = eXe−Y eX ∈ SL2(C)

in terms of the Lefschetz decomposition, and we proved the following key formula,
which relates w and the Hodge ∗-operator: for any α ∈ Ap,q(X), one has

∗α = (2π)k · (−1)qε(k)

(2πi)n
· wα,

where k = p + q and ε(k) = (−1)k(k−1)/2. We can now use this to construct
a polarization for the Hodge structure on each Hk(X,C). Namely, suppose that
α, β ∈ Ap,q(X). Then β ∈ Aq,p(X), and therefore

∗β =
1

(2πi)n
· (−1)pε(k)(2π)k · wβ,

where again k = p + q. If we put this into the formula for the hermitian inner
product on Ak(X,C) induced by the hermitian metric h, we get

h(α, β) =

∫

X

α ∧ ∗β = (−1)pε(k)(2π)k · 1

(2πi)n

∫

X

α ∧ wβ.

The conclusion is that

(−1)pε(k) · 1

(2πi)n

∫

X

α ∧ wβ = (2π)−kh(α, β)

is positive definite on Ap,q(X). According to our definition, this means exactly that
the hermitian pairing

(α, β) 7→ ε(k)
1

(2πi)n

∫

X

α ∧ wβ,

polarizes the Hodge structure on Hk(X,C).

Hodge-Lefschetz structures. In the cohomology algebra

H∗(X,C) =

2n⊕

k=0

Hk(X,C),

each summand has a Hodge structure of weight k, and the Lie algebra sl2(C) acts
on the whole thing. This is an example of a so-called “Hodge-Lefschetz structure”.
Since the same kind of structure also appears in the study of degenerating variations
of Hodge structure, we are going to dwell a bit on the definition. We will also see
that this gives a nice way to understand the formula for the polarization that we
have just derived.

Let us set Vk = Hn+k(X,C); this has a Hodge structure of weight n + k, and
its weight with respect to the action by H is equal to k. Note that the weight of
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the Hodge structures and the weight with respect to the sl2(C)-action are off by
n = dimX. Now consider the graded vector space

V =
⊕

k∈Z
Vk,

with the induced action by the Lie algebra sl2(C) and the Lie group SL2(C). As
we saw in Lecture 1, the operator

X : Vk → Vk+2(1)

is a morphism of Hodge structures of weight k, due to the fact that ω is a closed
(1, 1)-form; likewise,

Y : Vk → Vk−2(−1)

is a morphism of Hodge structures of weight k. In other words, the action of sl2(C)
is compatible with the Hodge structures on the weight spaces Vk.

Definition 3.1. Let n ∈ Z. A Hodge-Lefschetz structure of central weight n is a
finite-dimensional graded complex vector space

V =
⊕

k∈Z
Vk

with an action by the Lie algebra sl2(C), subject to the following conditions:

(a) Each Vk is the k-eigenspace of H, hence X(Vk) ⊆ Vk+2 and Y (Vk) ⊆ Vk−2.
(b) Each Vk has a Hodge structure of weight n+ k, and

X : Vk → Vk+2(1) and Y : Vk → Vk−2(−1)

are morphisms of Hodge structure.

For the time being, suppose that V is an abstract Hodge-Lefschetz structure
of central weight n. When we reviewed the representation theory of sl2(C) in
Lecture 2, we saw that Xk : V−k → Vk is an isomorphism for every k ≥ 1.

Lemma 3.2. For every k ≥ 1, the morphism

Xk : V−k → Vk(k)

is an isomorphism of Hodge structures of weight n− k.

Proof. This is a general fact about Hodge structures: If f : H1 → H2 is a morphism
of Hodge structures of some weight, and if f is an isomorphism of vector spaces, then
f−1 is also a morphism of Hodge structures. The proof is left as an exercise. �

Consider now the induced action of w = eXe−Y eX ∈ SL2(C) on V . We know
that w : Vk → V−k is an isomorphism for every k ∈ Z. But since X and Y are only
morphisms up to a Tate twist, each term in the series expansion of w = eXe−Y eX

needs a different Tate twist, and so it is not immediately clear that w is a morphism
of Hodge structures. We should check that this is actually the case.

Proposition 3.3. If V is a Hodge-Lefschetz structure of central weight n, then

w : Vk → V−k(−k)

is an isomorphism of Hodge structures (for every k ∈ Z).

Proof. For the same reason as above, it is enough to show that

w : Vk → V−k(−k)

is a morphism of Hodge structures of weight n+ k. This can be done with the help
of Lefschetz decompositions. Any a ∈ Vk has a unique Lefschetz decomposition

a =
∑

j≥max(k,0)

Xj

j!
aj ,
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where aj ∈ Vk−2j satisfies Y aj = 0. Recall that only terms with j ≥ k appear in
the sum, because X2j−k+1aj = 0, which implies that Xjaj = 0 for j < k.

Let us first show that if a ∈ V p,qk , where p+ q = n+ k, then also aj ∈ V p−j,q−jk−2j .
Let ` be the maximal integer with the property that a` 6= 0 but a`+1 = 0; this
exists because V is finite-dimensional. Since X2j−k+1aj = 0 for every j, we get

X2`−k

`!
a` = X`−ka ∈ V p+`−k,q+`−k2`−k ,

due to the fact that X is a morphism. But by the preceding lemma,

X2`−k : Vk−2` → V2`−k(2`− k)

is an isomorphism of Hodge structures, and therefore a` ∈ V p−`,q−`k−2` . We can now
subtract off the term involving a`, and continue by descending induction on j, to
prove that aj ∈ V p−j,q−jk−2j for every j ≥ max(k, 0).

It is now easy to show that wa ∈ V p−k,q−k−k . Indeed, Proposition 2.5 gives

wa =
∑

j≥max(k,0)

w
Xj

j!
aj =

∑

j≥max(k,0)

(−1)j
Xj−k

(j − k)!
aj ∈ V p−k,q−k−k .

This says exactly that w is a morphism of Hodge structures. �

Polarized Hodge-Lefschetz structures. Now let us revisit the question of po-
larizations, starting again from the geometric case where Vk = Hn+k(X,C). For
each k ∈ Z, we have a bilinear pairing

(3.4) Sk : Vk ⊗C V−k → C, Sk(α, β) = ε(n− k) · 1

(2πi)n

∫

X

α ∧ β.

The extra sign factor ε(n− k) = (−1)(n−k)(n−k−1)/2 is there to make the formulas
nicer; this will become clear in a moment.

Note. For any complex vector space W , we denote by W the conjugate complex
vector space; it has the same underlying set, but the scalar multiplication by λ ∈ C
is defined as λ · w = λ̄w. Therefore a bilinear pairing

S : W ⊗C W → C

is the same thing as a pairing on W that is linear in the first argument and
conjugate-linear in the second argument.

These pairings interact very well with the sl2(C)-action.

Proposition 3.5. The pairings in (3.4) have the following properties:

(a) Sk(Hα, β) = −Sk(α,Hβ) for all α ∈ Vk and β ∈ V−k.

(b) Sk(α, β) = S−k(β, α) for all α ∈ Vk and β ∈ V−k.
(c) Sk+2(Xα, β) = Sk(α,Xβ) for all α ∈ Vk and β ∈ V−k−2.
(d) S−k(wα, β) = Sk(α,wβ) for all α ∈ Vk and β ∈ Vk.
(e) Sk−2(Y α, β) = Sk(α, Y β) for all α ∈ Vk and β ∈ V−k+2.

Proof. Since Hα = kα and Hβ = −kβ, the identity in (a) is trivial. The proof of
(b) is also straightforward: α is an (n+ k)-form, β an (n− k)-form, and so

Sk(α, β) = ε(n− k)
(−1)n

(2πi)n

∫

X

α ∧ β = ε(n− k)
(−1)n

(2πi)n

∫

X

(−1)(n+k)(n−k)β ∧ α

= (−1)kε(n− k)
1

(2πi)n

∫

X

β ∧ α = ε(n+ k)
1

(2πi)n

∫

X

β ∧ α = S−k(β, α),

due to the fact that ε(n+ k) = (−1)kε(n− k).
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To prove (c), we use the fact that X = 2πiL. This gives

Sk+2(Xα, β) = ε(n− k − 2)
1

(2πi)n

∫

X

2πi ω ∧ α ∧ β

= ε(n− k)
1

(2πi)n

∫

X

α ∧ 2πi ω ∧ β = Sk(α,Xβ),

due to the fact that ε(n− k) = −ε(n− k − 2).
Now let us prove (d). It is enough to consider the case where α, β ∈ V p,qk for

some p+ q = n+ k. The formula for the Hodge ∗-operator in Proposition 2.7 reads

wα =
(2πi)n(−1)qε(n+ k)

(2π)n+k
∗α,

and therefore

S−k(wα, β) =
(−1)q

(2π)n+k

∫

X

∗α ∧ β =
(−1)n+k+q

(2π)n+k

∫

X

β ∧ ∗α =
(−1)p

(2π)n+k
h(β, α)

is, up to a constant factor, equal to the hermitian inner product on forms induced
by the Kähler metric h. But the right-hand side equals

(−1)p

(2π)n+k
h(α, β) = S−k(wβ, α) = Sk(α,wβ),

using the identity we have just derived, together with (b).
The least obvious statement is (e), because it is not clear at first glance how one

can move Y = (2πi)−1Λ from one factor of the integral to the other. Here the fact
that wXw−1 = −Y comes to the rescue. Recall first that w2α = (−1)kα, which
means that w−1α = (−1)kwα. Using the identities we have already derived, we get

Sk−2(Y α, β) = (−1)k+1Sk−2(wXwα, β) = (−1)k+1Sk(α,wXwβ) = Sk(α, Y β),

because similarly w−1β = (−1)−k+2wβ. This completes the proof. �

These identities become much easier to remember if we combine all the individual
pairings in (3.4) into one big sesquilinear pairing

S : V ⊗C V → C, S
∣∣
Vk⊗CV`

=

{
Sk if ` = −k,

0 otherwise.

This removes the needs for any subscripts. With this notation in place, the identities
in Proposition 3.5 are saying that the pairing S is hermitian symmetric, and that

S ◦ (H ⊗ id) = −S ◦ (id⊗H),

S ◦ (X ⊗ id) = S ◦ (id⊗X),

S ◦ (Y ⊗ id) = S ◦ (id⊗Y ),

S ◦ (w ⊗ id) = S ◦ (id⊗w).

(3.6)

In other words, the three operators X, Y , and w are self-adjoint with respect to
the hermitian pairing S, whereas H is anti self-adjoint.

We can now redo the calculation from the beginning of class. Suppose that
α, β ∈ Ap,q(X) represent two cohomology classes in Vk = Hn+k(X,C), so that
p+ q = n+ k. During the proof of Proposition 3.5, we showed that

Sk(α,wβ) =
(−1)p

(2π)n+k
h(α, β),

where h is the positive definite hermitian inner product induced by the Kähler
metric. This is saying exactly that the hermitian pairing

Sk ◦ (id⊗w) : Vk ⊗C Vk → C
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is a polarization of the Hodge structure on Vk = Hn+k(X,C). We can say this
even more concisely as follows: the graded vector space V is a direct sum of Hodge
structures of different weights, and the single pairing S ◦ (id⊗w) polarizes all of
these Hodge structures at the same time.

As before, this suggest the following general definition.

Definition 3.7. Let V be a Hodge-Lefschetz structure of central weight n. Then
a polarization of V is a hermitian pairing

S : V ⊗C V → C

with the following two properties:

(a) The four identities in (3.6) are satisfied.
(b) The hermitian pairing S ◦ (id⊗w) polarizes the Hodge structure of weight

n+ k on each Vk.

Suppose that S is a polarization of V , in the sense we have just defined. The
relation S ◦ (H ⊗ id) = −S ◦ (id⊗H) implies that

S
∣∣
Vk⊗CV`

= 0 unless ` = −k,

and so S is actually given by a collection of sesquilinear pairings Sk : Vk⊗CV−k → C.
The second condition in the definition is then saying that the hermitian pairing

Sk ◦ (id⊗w) : Vk ⊗C Vk → C

polarizes the Hodge structure on Vk. The following sequence of exercises shows
that most of these conditions, with the exception of positivity, can be expressed in
functorial language.

Exercise 3.1. If H has a Hodge structure of weight n, then the conjugate complex
vector space H also has a Hodge structure of weight n, with

Hp,q = Hq,p.

Now suppose that V is a Hodge-Lefschetz structure of central weight n. Show that
the conjugate complex vector space

V =
⊕

k∈Z
Vk

is also Hodge-Lefschetz structure of central weight n, where the action of H is
unchanged, but where X and Y act with an extra minus sign. (This is dictated by
the geometric case, where X = 2πiL and Y = (2πi)−1Λ.)

Exercise 3.2. Suppose that V ′ and V ′′ are Hodge-Lefschetz structures of central
weight n′ and n′′. Show that the tensor product V ′ ⊗C V

′′ is naturally a Hodge-
Lefschetz structure of central weight n′ + n′′: to be precise,

(
V ′ ⊗C V

′′)
k

=
⊕

i+j=k

V ′i ⊗C V
′′
j ,

and the sl2(C)-action is given by the usual formulas

X(v′ ⊗ v′′) = Xv′ ⊗ v′′ + v′ ⊗Xv′′,
Y (v′ ⊗ v′′) = Y v′ ⊗ v′′ + v′ ⊗ Y v′′,
H(v′ ⊗ v′′) = Hv′ ⊗ v′′ + v′ ⊗Hv′′,
w(v′ ⊗ v′′) = wv′ ⊗ wv′′.
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Exercise 3.3. We can turn C(−n) into a Hodge-Lefschetz structure of central weight
2n by letting sl2(C) act trivially. Let V be a Hodge-Lefschetz structure of central
weight n, and S : V ⊗C V → C a hermitian pairing. Show that

S : V ⊗C V → C(−n)

is a morphism of Hodge-Lefschetz structures of central weight 2n if, and only if, S
satisfies the identities in (3.6) and the Hodge decomposition on each Vk is orthogonal
with respect to the pairing Sk ◦ (id⊗w).
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